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Motivation

• Limited knowledge of hydrate kinetics

• Poor understanding of hydrate/sediment
properties

To produce gas from hydrates we need to
develop a reliable model for reservoir
behavior!

• Can x-ray CT be used to study hydrate kinetics?
What is the potential for x-ray CT to spatially and
temporally resolve hydrate processes?



Initial Experiment Description

 

1. Start with sample at LN temperature
2. Allow room heat to progressively warm

sample
3. Acquire periodic images while capturing

dissociated methane
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Result: X-ray CT can be used to study hydrate kinetics!
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Estimating effective heat transport
parameters
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Stefan Model of CT Experiment

Stefan moving boundary
problem provides numerical
model to interpret CT data.

CT provides x(t).
Solve for K1.
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Portable X-ray CT

•Field
deployable

•Rapidly
characterize
cores

•Performance
exceeds
medical CT
systems

ODP Leg 210



Portable System for Geologic Core

• Microfocal X-ray Source

45–130 kV, 0.5mA

• Cylindrical Sample

1.5 m _ 9.5 cm

• Core rotated on vertical
axis

• 15 cm image intensifier

• X-ray filter for multi-energy
scanning

• Attenuation compensator

• Cabinet safe

• Resolution 200µm
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Hot Ice #1

• Anadarko Petroleum/Maurer
Technology/DOE Methane
hydrate research well

• Drilled down to 1403’ March-
April 2003

• CT Imaged 159 of 391 Core
Tubes (approx 90cm core/tube)



Core Images from Hot Ice #1
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Experimental Method

1. Hydrate/Sediment is
stabilized in a pressure
vessel.

2. Baseline CT images are
acquired.

3. Sample is brought out of
hydrate stability region.

4. Images are periodically
acquired as hydrate
dissociates.

5. Differential image
analysis performed.
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Equipment
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Progression of Hydrate Dissociation

Baseline 13 min 23 min

33 min 41 min 58 min



Density Change During Dissociation

Theoretical change in density: -7.7% (Based on initial density)

Estimated from X-ray Images: -8.6% 
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Experiment 2

Baseline

8 min 19 min 28 min

35 min 44 min 64 min
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Density Changes During Dissociation
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 95% Confidence Intervals
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Cone Beam X-ray CT Accuracy
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Conclusions

• X-ray CT allows rapid characterization of geologic
core, revealing sedimentary structures,
alterations, fractures, and flow channels and
barriers.

• Gas Hydrate dissociation can be both spatially
and temporally imaged using x-ray CT.

• A portable x-ray CT can discern density changes
of 0.04 g/cc in a 3mm cube. ~30% change in
hydrate saturation in a 0.03cc nodule of hydrate.


